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Abstract. The evolution of coupled fermions interacting with external axial-vector fields is described with the
help of the classical field theory. We formulate the initial conditions problem for the system of two coupled
fermions in (3+1)-dimensional space-time.This problem is solved using perturbation theory.Weobtain in the
explicit form the expressions for the leading and next to leading order terms in the expansion over the strength
of the external fields. It is shown that in the relativistic limit the intensity of the fermion field coincides with the
transition probability in the two neutrinos system interacting withmoving and polarized matter.
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1 Introduction

The description of mixed fermion evolution has attracted
considerable attention since the experimental confirmation
of solar neutrino oscillations [1, 2]. The majority of the neu-
trino oscillations studies involve the quantum mechanical
approach to the description of the neutrino wave function
evolution [3]. Despite the fact that quantum mechanics al-
lows one to establish the main properties of the neutrino
oscillations process, this method of treatment of neutrino
oscillations has several disadvantages. Neutrinos are usu-
ally supposed to be scalar particles without reference to
the multicomponent single neutrino wave function. The
famous Pontecorvo formula [4], which is in use in many the-
oretical and experimental studies of neutrino oscillations,
is valid only for ultrarelativistic particles. However, the ex-
act theory of the considered process must be applicable
for neutrinos with arbitrary energies. A quantum mechan-
ical approach also does not make it clear if mass or flavor
eigenstates bear more physical meaning. Therefore one can
see that a theoretical model of neutrino oscillations, which
would overcome the above mentioned difficulties, should
be put forward. There have been numerous attempts to
construct the appropriate formalism for neutrino flavor os-
cillations in vacuum. The quantum field theory was applied
to this problem in [5–8]. The authors of these papers re-
produced the Pontecorvo formula and discussed the cor-
rections to this expression. Recently we revealed in [9] that
neutrino flavor oscillations in vacuum could be explained in
the framework of classical field theory.

a e-mail: maxdvo@izmiran.ru

It was also realized that neutrino interactions with ex-
ternal fields can drastically change the picture of the oscil-
lations process. For example, it was discovered in [10, 11]
that the transition probability can achieve large values if
a neutrino interacts with background matter by means
of weak currents. Thus we should develop now not only
the appropriate theory of neutrino oscillations in vacuum,
but also include in our treatment possible effects of neu-
trino interactions with external fields. During the last
three decades the approaches to the theoretical substan-
tiation of the Mikheyev–Smirnov–Wolfenstein (MSW) ef-
fect have been developed. Among them we can distin-
guish [12, 13] in which the neutrino relativistic wave equa-
tions in dense matter were analyzed. The S-matrix ap-
proach was used [14] to account for the MSW effect. The
influence of moving and polarized matter was described
in [15, 16].
The purpose of the present work is to provide a deeper

understanding of the neutrino flavor oscillations phe-
nomenon. The approach developed in our paper can not
only reproduce the Pontecorvo formula for the transition
probability, but also give a clear physical explanation for
the corrections to this expression, which are widely dis-
cussed now (see, e.g., [17] and references therein). The
analysis used in this article is based on classical field the-
ory methods. We study the evolution of coupled classical
fermions under the influence of external axial-vector fields.
A classical fermion is regarded as a first quantized field
because the Dirac equation,
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in which we use the common notation for the gamma ma-
tricesα= γ0γ and β = γ0, does contain the Plank constant
h̄; however, the wave function ψ is supposed to be a non-
operator object in our approach. Therefore we do not in-
volve the second quantization in the present work. Note
that the discussion of the first quantized neutrino fields is
also presented in [18].
In Sect. 2 we start from the flavor neutrino Lagrangian

which accounts for the interaction with external axial-
vector fields. Then we derive the basic integro-differential
equations for the “mass eigenstates” which exactly take
into account both Lorentz invariance and the interaction
with external fields. These equations are also valid in (3+
1) dimensions. The perturbation theory is used for the an-
alysis of the equations obtained. In Sect. 3 we discuss the
neutrino fields distributions and obtain the zero order term
in their expansion over the external fields strength. This re-
sult corresponds to vacuum neutrino oscillations. In Sect. 4
we get the first order correction to the neutrino field inten-
sity in vacuum and show that our formula is identical to the
expression for the neutrino transition probability obtained
in the quantum mechanical approach for ultrarelativistic
neutrinos. This case corresponds to neutrino flavor oscilla-
tions in moving and polarized matter. Finally we discuss
our results in Sect. 5.

2 General formalism

Without losing generality we can discuss the evolution of
the two coupled fermions system (ν1, ν2). These fermions
are taken to interact with the external axial-vector fields
fµ1,2. The Lagrangian for this system is expressed in the fol-
lowing form:

L(ν1, ν2) =
∑

k=1,2

L0(νk)+ gν̄2ν1+ g
∗ν̄1ν2

−
∑

k=1,2

ν̄kγ
L
µ νkf

µ
k , (1)

where g is the coupling constant (g∗ is the complex conju-

gate value), γLµ = γµ(1+γ
5)/2 (γ5 =−iγ0γ1γ2γ3), and

L0(νk) = ν̄k(iγ
µ∂µ−mk)νk .

is the free fermion Lagrangian, mk are the masses of the
corresponding fermions νk.
One of the possible examples of the fermions νk is the

system of neutrinos belonging to different flavor states.
In this case we can identify the first fermion in (1) with
a muon neutrino νµ or a τ -neutrino ντ and the second
one with an electron neutrino νe. These neutrino types
are known to interact with matter composed of electrons,
protons and neutrons by means of the electroweak interac-
tion. Note that an electron neutrino interacts with back-
ground fermions via both charged and neutral weak cur-
rents whereas a muon or a τ -neutrino is involved only in
the interaction through weak neutral currents. Thus the
external axial-vector fields fµ1,2 can be expressed in terms of

the hydrodynamical currents jµf and the polarizations λ
µ
f

of different fermions in matter (see, e.g., [16, 19, 20]),

fµ1,2 =
√
2GF

∑

f=e,p,n

(
jµf ρ

(1,2)
f +λµf κ

(1,2)
f

)
, (2)

where GF is the Fermi constant and

ρ
(1)
f =

(
I
(f)
3L −2Q

(f) sin2 θW+ δef
)
, (3)

κ
(1)
f =−

(
I
(f)
3L + δef

)
,

ρ
(2)
f =

(
I
(f)
3L −2Q

(f) sin2 θW
)
,

κ
(2)
f =−I

(f)
3L ,

δef =

{
1, f = e ;

0, f = n, p .

Here I
(f)
3L is the third isospin component of the matter

fermion f , Q(f) is its electric charge and θW is the Wein-
berg angle. The hydrodynamical currents and the polariza-
tions are related to the fermion velocities vf and the spin
vectors ζf by means of the following formulas:

jµf = (nf , nfvf ) ,

λµf =

⎛

⎝nf (ζfvf ), nfζf
√
1− v2f +

nfvf (ζfvf )

1+
√
1− v2f

⎞

⎠ . (4)

The detailed derivation of (2)–(4) is presented in [16, 19,
20].
Following the results of our previous work [9] we will

study the evolution of the system (1) by solving the Cauchy
problem. Let us choose the initial conditions in the form

ν1(r, 0) = 0, ν2(r, 0) = ξ(r) , (5)

where ξ(r) is a known function. If one considers the
fermions νk as flavor neutrinos, the initial conditions in (5)
correspond to the common situation in a neutrino oscil-
lation experiment, i.e. νµ,τ are absent initially and νe has
some known field distribution. We will be interested in
searching for the fields distributions νk(r, t) for t > 0.
In order to solve the Cauchy problem we introduce the

new set of fermions (ψ1, ψ2) by means of the matrix trans-
formation

(
ν1
ν2

)
=

(
cos θ sin θ
− sin θ cos θ

)(
ψ1
ψ2

)
. (6)

The mixing matrix (which is parameterized with the help
of the one angle θ) in (6) is chosen in such a way as to
eliminate the second and the third terms in (1). If we had
studied the evolution of our system without the external
fields fµ1,2, i.e. in vacuum, the fermions ψk would have
been called mass eigenstates because they would have di-
agonalized the Lagrangian and therefore ψk would have
had definite masses. In our case (fµ1,2 �= 0), if we simplify
the vacuum mixing terms, the matter term becomes more
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complicated compared to (1). The Lagrangian rewritten in
terms of the fields ψk can be expressed in the following way:

L(ψ1, ψ2) =
∑

k=1,2

L0(ψk)−

[
ψ̄1γ

L
µψ1
(
c2fµ1 + s

2fµ2
)

+ ψ̄2γ
L
µψ2
(
c2fµ2 + s

2fµ1
)

+ sc
(
ψ̄1γ

L
µψ2+ ψ̄2γ

L
µψ1
)
(fµ1 −f

µ
2 )

]
, (7)

where

L0(ψk) = ψ̄k (iγ
µ∂µ−mk)ψk .

It should be noted that the masses mk of the fermions ψk
are related to the masses mk by the formula,

m1 = c
2m1+ s

2m2 , m2 = c
2m2+ s

2m1 ,

In (7) we use the notation c= cos θ and s= sin θ.
Equation (7) has some advantages in comparison with

(1) despite the more complicated matter interaction term.
The terms gν̄2ν1 and g

∗ν̄1ν2 in (1), which are responsible
for the vacuum oscillations cannot be treated within the
perturbation theory. In order to describe the flavor chang-
ing processes one has to take into account these terms
exactly. In (7) we have the additional interaction terms
which can be analyzed in the usual way with the help of
the perturbation theory if the strength of the fields fµ1,2
is supposed to be weak. The criterion of the weakness of
the external fields is discussed in detail in Sect. 4. It is also
possible to assume the convenient time dependence (some-
times it is necessary to consider the adiabatic switching-on
of the interaction) of the fields fµ1,2 in (7). On the con-
trary we cannot “switch-on” or “switch-off” the constant
g in (1) at some moments of time because it is related to
the properties of a theoretical scheme underlying the phe-
nomenological model of neutrino oscillations.
Now let us discuss the evolution of the system (7) with

the initial conditions

ψ1(r, 0) =−sξ(r) , ψ2(r, 0) = cξ(r) ,

which follow from (5) and (6). We also suppose that the
external fields fµ1,2 are weak and one is able to take them
into account in the lowest order of perturbation theory. If
we had solved this problem using quantum field theory, we
would have calculated the contributions of the four Feyn-
man diagrams shown on Fig. 1.
We can always rewrite the Dirac equations which result

from (7) in the form

iψ̇1 = (H1+V1)ψ1+V ψ2 ,

iψ̇2 = (H2+V2)ψ2+V ψ1 , (8)

where V1 = βγ
L
µ (c

2fµ1 + s
2fµ2 ), V2 = βγ

L
µ (c

2fµ2 + s
2fµ1 ),

V = scβγLµ (f
µ
1 −f

µ
2 ) and Hk = −iα∇+βmk are the free

fields Hamiltonians. We are searching for the solutions
of (8) in the following way:

ψk(r, t) =

∫
d3p

(2π)3/2

[
ak(p, t)Ψ

+
k,p(x)+ bk(p, t)Ψ

−
k,p(x)

]
,

(9)

Fig. 1. Feynman diagrams contributing to the interaction of
the fermions ψk with the external axial-vector fields f

µ
1,2

where Ψ+k,p(x) = uk(p)e
−ipkx and Ψ−k,p(x) = vk(p)e

ipkx

are the basis spinors, xµ = (t, r), pµk = (Ek,p) and Ek =√
p2+m2k is the energy of the fermion ψk. The coefficients
ak(p, t) and bk(p, t) are not the creation and annihilation
operators since we are using here the classical field the-
ory. The values of these functions should be chosen in such
a way as to satisfy the initial conditions (5). Note that
there is an additional time dependence of these functions
in contrast to the case of the flavor changing process in
vacuum [9].
Using the orthonormality condition of the basis spinors

Ψ+k,p(x) = uk(p)e
−ipkx and Ψ−k,p(x) = vk(p)e

ipkx we obtain
from (8) the new integro-differential equations for the func-
tions ak(p, t) and bk(p, t),

iȧ1(p, t) =
1

(2π)3/2

(∫
d3rΨ+†1,p(x)V1ψ1(r, t)

+

∫
d3rΨ+†1,p(x)V ψ2(r, t)

)
,

iḃ1(p, t) =
1

(2π)3/2

(∫
d3rΨ−†1,p(x)V1ψ1(r, t)

+

∫
d3rΨ−†1,p(x)V ψ2(r, t)

)
,

iȧ2(p, t) =
1

(2π)3/2

(∫
d3rΨ+†2,p(x)V2ψ2(r, t)

+

∫
d3rΨ+†2,p(x)V ψ1(r, t)

)
,

iḃ2(p, t) =
1

(2π)3/2

(∫
d3rΨ−†2,p(x)V2ψ2(r, t)

+

∫
d3rΨ−†2,p(x)V ψ1(r, t)

)
. (10)

These equations correctly take into account both Lorentz
invariance and the interaction with the external fields fµ1,2.
However if we suppose that these external fields are rather
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weak, it is possible to look for the solutions of (10) in the
form of a series,

ak(p, t) =a
(0)
k (p)+a

(1)
k (p, t)+ . . . ,

bk(p, t) =b
(0)
k (p)+ b

(1)
k (p, t)+ . . . . (11)

Equations (11) mean that the field distributions can also

be presented in the form of the series ψk(r, t) = ψ
(0)
k (r, t)+

ψ
(1)
k (r, t)+ . . .Note that the coefficients a

(0)
k (p) and b

(0)
k (p),

which correspond to the function ψ
(0)
k (r, t), do not de-

pend on time. The functions ψ
(0)
k (r, t) are responsible for

the evolution of the considered system in vacuum, i.e. at
fµ1,2 = 0. These functions in 2-dimensional space-time have
been found in our previous work [9] where the analogous
Cauchy problem has been solved in explicit form in the (1+
1)-dimensional case. However to describe the evolution of
our system with the non-zero external fields in (3+1)-
dimensional space-time we should study the vacuum case
also in (3+1) dimensions.

3 Evolution of the system in vacuum

To study the behavior of ψ
(0)
k (r, t), i.e. the evolution of our

system in vacuum, we use the results of [9] where it has
been revealed that the field distributions for the given ini-
tial conditions have the form

ψ
(0)
1 (r, t) =−s

∫
d3r′S1(r

′− r, t)(−iβ)ξ(r′) ,

ψ
(0)
2 (r, t) = c

∫
d3r′S2(r

′− r, t)(−iβ)ξ(r′) , (12)

where Sk(r, t) is the Pauli–Jordan function for the fermion
ψk (see, e.g., [21]). It should be noted that (12) are the most
general ones and valid in (3+1) dimensions. Contrary to
the approach of [9] here we use the momentum represen-
tation because the integrations in (12) are rather cumber-
some in the coordinate representation. Thus one rewrites
these expressions using the Fourier transform of the initial
conditions. Equations (12) now take the form

ψ
(0)
1 (r, t) =−s

∫
d3p

(2π)3
eiprS1(−p, t)(−iβ)ξ(p) ,

ψ
(0)
2 (r, t) = c

∫
d3p

(2π)3
eiprS2(−p, t)(−iβ)ξ(p) , (13)

where

Sk(−p, t) =

[
cosEkt− i

sinEkt

Ek
(αp+βmk)

]
(iβ) , (14)

and

ξ(p) =

∫
d3re−iprξ(r) ,

are the Fourier transforms of the functions Sk(r, t) and
ξ(r).

Now let us choose the initial condition.We suppose that
the initial field distribution of ν2 is the plane wave, i.e.
ξ(r) = eiωrξ0, where ξ0 is the normalization spinor. The
Fourier transform of this function can be simply computed,
ξ(p) = (2π)3δ3(ω−p)ξ0. Using (13) we get the field distri-
butions in the (3+1)-dimensional space-time for the plane
wave initial condition,

ψ
(0)
1 (r, t) =−se

iωr

[
cos[E1(ω)t]− i

sin[E1(ω)t]

E1(ω)
(αω+βm1)

]

× ξ0 ,

ψ
(0)
2 (r, t) = ce

iωr

[
cos[E2(ω)t]− i

sin[E2(ω)t]

E2(ω)
(αω+βm2)

]

× ξ0 , (15)

where Ek(ω) =
√
ω2+m2k.

In the following we discuss the case of rapidly os-
cillating initial conditions, i.e. ω � m1,2. One obtains
from (15) the field distributions for ω�m1,2 in the follow-
ing form:

ψ
(0)
1 (r, t) =−se

iωr(cos[E1(ω)t]− i(αn) sin[E1(ω)t])ξ0 ,

ψ
(0)
2 (r, t) = ce

iωr(cos[E2(ω)t]− i(αn) sin[E2(ω)t])ξ0 ,
(16)

where n=ω/ω is the unit vector in the direction of the ini-
tial field distribution momentum. The fermion ν1 is absent
at t= 0. Therefore it would be interesting to examine the
field distribution ν

(0)
1 (r, t) at t > 0. Using (6) and (16), we

obtain

ν
(0)
1 (r, t) = cψ

(0)
1 + sψ

(0)
2 = sin 2θ sin[∆(ω)t]

×
{
sin[σ(ω)t]+ i(αn) cos[σ(ω)t]

}
eiωrξ0 ,

(17)

where

σ(ω) =
E1(ω)+E2(ω)

2
→ ω+

m21+m
2
2

4ω
,

∆(ω) =
E1(ω)−E2(ω)

2
→
m21−m

2
2

4ω
=
∆m2

4ω
.

The measurable quantity of a classical spinor field is the in-
tensity. With the help of (16) one gets the intensity of the

fermion ν
(0)
1 in the following form:

I
(0)
1 (t) = |ν

(0)
1 (r, t)|

2 = sin2(2θ) sin2[∆(ω)t]ξ†0| sin[σ(ω)t]

+ i(αn) cos[σ(ω)t]|2ξ0

= sin2(2θ) sin2
(
∆m2

4ω
t

)
, (18)

which reproduces the Pontecorvo formula in the (3+1)-
dimensional space-time since we can regard the intensity of
the fermion ν1 as the transition probability in two neutrino
system. Equation (18) also generalizes the result of our pre-
vious work [9] where the analogous expression was derived
in (1+1) dimensions.
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4 Interaction of the system
with an external field

In order to proceed in our study of the two neutrino system
evolution under the influence of the external fields fµ1,2 we
discuss the further correction to the vacuum case. The first
order corrections to (13) can be derived from (9) and (10)
and have the form

ψ
(1)
1 (r, t) = i

∫
d3p

(2π)3
eipr

2E1

{
E1

[
sV1
(
S
+
1 e
−iE1t+S−1 e

+iE1t
)

− cV (S+12e
−iE1t+S−12e

+iE1t)

]

+(αp+βm1)

[
sV1
(
S
+
1 e
−iE1t−S−1 e

+iE1t
)

− cV
(
S
+
12e
−iE1t−S−12e

+iE1t
) ]}
(−iβ)ξ(p) ,

ψ
(1)
2 (r, t)=−i

∫
d3p

(2π)3
eipr

2E2

{
E2

[
cV2
(
S
+
2 e
−iE2t+S−2 e

+iE2t
)

− sV
(
S
+
21e
−iE2t+S−21e

+iE2t
) ]

+(αp+βm2)

[
cV2
(
S
+
2 e
−iE2t−S−2 e

+iE2t
)

− sV
(
S
+
21e
−iE2t−S−21e

+iE2t
) ]}
(−iβ)ξ(p) ,

(19)

where

S
±
12 =

∫ t

0

e±iE1tS2(−p, t)dt ,

S
±
21 =

∫ t

0

e±iE2tS1(−p, t)dt ,

S
±
1,2 =

∫ t

0

e±iE1,2tS1,2(−p, t)dt . (20)

When we derive (19) we suppose that a
(1)
1,2(p, 0) = b

(1)
1,2(p, 0)

= 0. It means that at t = 0 the field distributions are de-
termined by (13). One can find the explicit form of the
functions given in (20) using (14):

S
±
12 =

1

2

{
e±iσt

sinσt

σ
+e±i∆t

sin∆t

∆

−
αp+βm2
E2

(
±e±iσt

sinσt

σ
∓ e±i∆t

sin∆t

∆

)}
(iβ) ,

S
±
21 =

1

2

{
e±iσt

sinσt

σ
+e∓i∆t

sin∆t

∆

−
αp+βm1
E1

(
±e±iσt

sinσt

σ
∓ e∓i∆t

sin∆t

∆

)}
(iβ) ,

S
±
1,2 =

1

2

{(
±
1

2iE1,2
e±2iE1,2t+ t

)

+i
αp+βm1,2
E1,2

(
1

2iE1,2
e±2iE1,2t∓ t

)}
(iβ) , (21)

where

σ =
E1+E2
2

, ∆=
E1−E2
2

.

On the basis of (19) and (21) we obtain the expressions for
the first order corrections to the vacuum case in the follow-
ing form:

ψ
(1)
1 (r, t) = i

∫
d3p

(2π)3
eipr

2E1

{
E1

[
sV1

×

{
sin E1t

E1
+ t cosE1t− i

αp+βm1
E1

t sinE1t

}

− cV

{
sinσt

σ
cos∆t+

sin∆t

∆
cosσt

+i
αp+βm2
E2

sinσt sin∆t

(
1

σ
−
1

∆

)}]

+(αp+βm1)

[
sV1

{
− it sin E1t

+
αp+βm1
E1

(
t cosE1t−

sinE1t

E1

)}

− cV

{
− i sinσt sin∆t

(
1

σ
+
1

∆

)

+
αp+βm2
E2

(
sin∆t

∆
cosσt

−
sinσt

σ
cos∆t

)}]}
ξ(p) ,

ψ
(1)
2 (r, t) =−i

∫
d3p

(2π)3
eipr

2E2

{
E2

[
cV2

×

{
sin E2t

E2
+ t cosE2t− i

αp+βm2
E2

t sinE2t

}

− sV

{
sinσt

σ
cos∆t+

sin∆t

∆
cosσt

− i
αp+βm1
E1

sinσt sin∆t

(
1

σ
+
1

∆

)}]

+(αp+βm2)

[
cV2

{
− it sin E2t

+
αp+βm2
E2

(
t cosE2t−

sinE2t

E2

)}

− sV

{
i sinσt sin∆t

(
1

σ
−
1

∆

)

+
αp+βm1
E1

(
sin∆t

∆
cosσt

−
sinσt

σ
cos∆t

)}]}
ξ(p) . (22)

Note that these expressions are valid for the arbitrary
initial conditions ξ(p) and exactly take into account the
Lorentz invariance. It should also be mentioned that along
with the harmonic functions there are several terms in
the integrands which linearly depend on time. Therefore
for (22) to be meaningful one has to assume that the po-
tentials V1,2 and V are rather weak, i.e. we study the in-
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teraction of our system with weak external fields (see (27)
below).
The integrations in (22) are rather complicated for the

arbitrary initial conditions. That is why we choose the
function ξ(p) analogously to Sect. 3, i.e. we again suppose
that ξ(p) = (2π)3δ3(ω−p)ξ0. The integrations over the
momenta are eliminated with the help of the δ-functions.
We also consider the high frequency approximation, i.e.
ω�m1,2. Finally we obtain the following expressions for
the fields distributions of the fermions ψk:

ψ
(1)
1 (r, t) = e

iωr i

2

{
st[V1+(αn)V1(αn)](cos[E1(ω)t]

− i(αn) sin[E1(ω)t])

− c
sin[∆(ω)t]

∆(ω)
[V +(αn)V (αn)](cos[σ(ω)t]

− i(αn) sin[σ(ω)t])

}
ξ0,

ψ
(2)
1 (r, t) =−e

iωr i

2

{
ct[V2+(αn)V2(αn)](cos[E2(ω)t]

− i(αn) sin[E2(ω)t])

− s
sin[∆(ω)t]

∆(ω)
[V +(αn)V (αn)](cos[σ(ω)t]

− i(αn) sin[σ(ω)t])

}
ξ0 . (23)

On the basis of (6) and (23) we can derive the first order
correction to the field distribution of the fermion ν1 in the
form

ν
(1)
1 (r, t) =− sin 2θe

iωr i

4

{
cos 2θ

sin∆(ω)t

∆(ω)
(F1−F2)

× (cos[σ(ω)t]− i(αn) sin[σ(ω)t])

− t

[
F1

{
c2(cos[E1(ω)t]− i(αn) sin[E1(ω)t])

− s2(cos[E2(ω)t]− i(αn) sin[E2(ω)t])

}

−F2

{
c2(cos[E2(ω)t]− i(αn) sin[E2(ω)t])

− s2(cos[E1(ω)t]− i(αn) sin[E1(ω)t])

}]}
ξ0 ,

(24)

where F1,2 = [f
0
1,2− (f1,2n)(Σn)](1+γ

5) andΣ=−γ5α.
To calculate the intensity of the field ν1 one should take

into account that the final expression for the intensity must
contain only terms linear in external fields. Therefore the
first order correction to the intensity should be calculated
with help of the formula

I
(1)
1 (t) = ν

(0)†
1 ν

(1)
1 +ν

(1)†
1 ν

(0)
1 .

Using (17) and (24) we get the expression for I
(1)
1 ,

I
(1)
1 (t) = sin

2(2θ) cos 2θ sin[∆(ω)t]
1

2

×

(
sin[∆(ω)t]

∆(ω)
− t cos[∆(ω)t]

)

×
〈( [
f02 (αn)− (f2n)

]

−
[
f01 (αn)− (f1n)

]) (
1+γ5

) 〉
. (25)

In (25) we use the notation 〈(. . . )〉= ξ†0(. . . )ξ0. To compute
the mean value with help of the normalization spinor ξ0 we
can suppose that ξ(r) = exp(−iEν2t)ξ(r)|t→0. Then we no-
tice that for spinors corresponding to high energies one has
the obvious identities (1+γ5)ξ0 ≈ 2ξ0 and ξ

†
0(αn)ξ0 ≈ 1.

Putting together (18) and (25) we obtain the final expres-
sion for the intensity of the fermion ν1:

I1(t) = I
(0)
1 (t)+ I

(1)
1 (t)

= sin2(2θ)

{
sin2[∆(ω)t]+cos 2θ sin[∆(ω)t]

×

(
sin[∆(ω)t]

∆(ω)
− t cos[∆(ω)t]

)

×
([
f02 − (f2n)

]
−
[
f01 − (f1n)

])}
. (26)

Using (26) it is possible to define the scope of the applied
method, i.e. we can evaluate the strength of external fields
necessary for the perturbative approach to be valid. With
help of (26) one obtains the inequalities,

A cos 2θ
∆(ω) , At cos 2θ
 1 , (27)

whereA= [f02 − (f2n)]− [f
0
1 − (f1n)]. If (27) is satisfied, the

contribution of external axial-vector fields to neutrino fla-
vor oscillations is small compared to the vacuum term. It
should be noted that (27) is valid in the ultrarelativistic
case. For neutrinos with Ek(ω)∼mk we should rely on (22)
rather than on (23). In this case the condition of the appli-
cability of our method will be different from (27).
Now let us compare (26) with the neutrino transi-

tion probability formula. Flavor neutrinos are considered
to interact with external axial-vector fields as it is de-
scribed in (2)–(4). Then the probability to find muon or
τ -neutrinos in the electron neutrinos beam in presence of
moving and polarized matter is expressed in the following
way (see, e.g., [15, 16])

Pνe→νµ,τ (t) = sin
2(2θeff) sin

2

(
πt

Leff

)
, (28)

where

sin2(2θeff) =
∆2(ω) sin2(2θ)

[∆(ω) cos 2θ−A/2]2+∆2(ω) sin2(2θ)
(29)

is the definition of the effective mixing angle, and

π

Leff
=

√
[∆(ω) cos 2θ−A/2]2+∆2(ω) sin2(2θ) (30)
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is the definition of the effective oscillation length.
To discuss the weak external field limit in (28)–(30) we

should expand (29) and (30) over the small parameter A
(see (27)). As a result one gets

sin2(2θeff)≈ sin
2(2θ)

(
1+
A cos 2θ

∆(ω)

)
,

π/Leff ≈∆(ω)− (A cos 2θ)/2 . (31)

It is also necessary to expand the time dependent factor
in (28),

sin2
(
πt

Leff

)
≈ sin2[2∆(ω)t]

−At cos 2θ sin [∆(ω)t] cos [∆(ω)t] .
(32)

Note that (32) is valid while At cos 2θ
 1, which coincides
with the second inequality in (27). With the help of (31)
and (32) the neutrino transition probability is reduced to
the form

Pνe→νµ,τ (t) = sin
2(2θ)

{
sin2[∆(ω)t]+cos 2θ sin[∆(ω)t]

×

(
sin[∆(ω)t]

∆(ω)
− t cos[∆(ω)t]

)

×
([
f02 − (f2n)

]
−
[
f01 − (f1n)

])}
,

which coincides with (26). This comparison shows that
neutrino flavor oscillations in weak axial-vector fields (e.g.,
if a neutrino propagates in moving and polarized mat-
ter) can be treated with help of the classical field theory
approach.

5 Conclusion

In conclusion we mention that the evolution of coupled
classical fermions under the influence of external axial-
vector fields has been studied in the present paper. We
have discussed the particular case of two coupled fermions
and formulated the Cauchy problem for this system. If
the initial conditions were chosen in the appropriate way,
as it has been shown in Sect. 2, the described system
might serve as a theoretical model of neutrino flavor os-
cillations in matter. The initial condition problem has
been solved with help of perturbation theory. We have
found the zero and the first order terms in the field dis-
tributions expansions over the external fields strength. It
should be noted that the obtained results exactly take
into account Lorentz invariance, and also they are valid
in (3+1)-dimensional space-time. The intensity of the
zero order term corresponds to the case of the neutrino
flavor oscillations in vacuum. Therefore we have gener-
alized our previous calculations performed in (1+1) di-
mensions in [9]. The first order correction is responsible
for the neutrino interaction with moving and polarized
matter. We have obtained this intensity of the fermion

field at great oscillation frequencies of the initial field dis-
tribution, that corresponds to ultrarelativistic neutrinos.
Note that we have compared our results with the tran-
sition probability formula for neutrino flavor oscillations
in moving and polarized matter as derived in [15, 16] and
revealed agreement in the case of weak external fields.
This comparison proves the validity of the method elabo-
rated in our work. Finally it has been demonstrated that
neutrino flavor oscillations in moving and polarized mat-
ter could be described with the help of the classical field
theory.
It is interesting to notice that along with the usual neu-

trino oscillations phase equal to ∆m2/(4ω) the classical
field theory approach also reveals rapid harmonic oscilla-
tions on the frequency (see, e.g., (15) and (22))

ωrapid =
E1(ω)+E2(ω)

2
→ ω+

m21+m
2
2

4ω
.

However these terms are suppressed by the ratios mk/ω
which are small for large values of ω. This case corresponds
to ultrarelativistic neutrinos. The analogous terms were
discussed in many previous publications devoted to neu-
trino flavor oscillations (see, e.g., [6, 8]). In our work it has
been demonstrated that such contributions to the neutrino
transition probability appear even in the classical field the-
ory approach. These terms arise from an accurate account
of Lorentz invariance.
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